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ENRICO BERGAMINI AND GEORG ZACHMANN

Our research identifies existing and potential specialisation in green 
technologies in European Union regions, and proposes an approach to identify 
policies that can help to realise this potential. Using the Organisation for 
Economic Cooperation and Development’s REGPAT database for regionalised 
patent data, we estimate the potential advantage European NUTS2 regions 
could have in 14 green technologies. We use network proximity between 
technologies and between regions to understand technological/regional 
clusters, and build the regressors for estimating potential regional advantage in 
specific technologies via zero-inflated beta regressions. We construct a dataset 
of lagged potentials and labour market, economic and demographic variables, 
and perform an elastic net regularisation to understand the association with 
current revealed advantages. Our approach indicates an association between 
technological advantage in green technologies in EU regions and participation 
rates in labour markets, sectoral employment in science and technology, 
general higher education, duration of employment, percentage of GDP spent 
on research and development (public and private), and other expenditure on 
R&D. If confirmed by causality tests, the established associations could help in 
designing horizontal economic policies to enable specific regions to realise their 
specialisation potential in specific green technologies.
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1 Introduction and literature review 

Keeping the global temperature increase below 2◦C above pre-industrial levels will require the almost 

complete decarbonisation of our energy system early in the second half of this century. This will 

require the increasing and diverse deployment of green technologies (including vehicles, power 

plants, appliances and batteries), which will replace the existing stock of high-carbon technologies.  

Regions with strong climate policies – such as the EU – will become pilot markets for low-carbon 

technologies. But being a pilot market does not automatically translate into a competitive edge in the 

new technologies, as the limited success of photovoltaic cell production in Europe shows. To enable 

domestic companies to flourish in these new sectors, policymakers seek to complement the creation 

of early markets for decarbonisation technologies with some form of industrial policy.  

In this paper, we argue that not all regions have the potential to excel in all green technologies, and 

that a fundamental characteristic of green industrial policies should be the consideration and 

inclusion of a tailored regional aspect. Our analysis relies on systematic evidence originating from the 

complexity-based literature triggered by Hidalgo and Hausmann (2009), and builds on analysis of 

green technologies patenting and the current advantages of similar regions. Hidalgo and Hausmann 

(2009) also employed the concept of relatedness between different technologies. 

The literature that builds on these theoretical frameworks and empirical approaches has advanced 

the European efforts to pursue so-called Smart Specialisation Strategies (Foray et al, 2011). Based on 

empirical work on geographically granular data, these analyses identify competitive advantages in 

terms of regions’ knowledge bases, labour markets, geographical characteristics or industrial 

structures, and provide guidelines for diversification opportunities at regional level. The idea is that 

regions can build on local characteristics in order to diversify into technologies related to their 

existing structures (Balland et al, 2019). Van den Berge and Weterings (2014) explored the potential 

for regions to diversify in eco-technologies. They found that in regions in which the knowledge base 

was previously characterised by the presence of green innovations, the likelihood of developing new 

technologies is greater. Montresor and Quatraro (2018) also explored the role of relatedness in green 

technology in a regional context, finding that the relatedness of the existing knowledge base can 

facilitate the entry of green technologies. They also found that the process of innovation makes green 

innovation desirable also for regions with stocks of related non-green knowledge. 
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Our empirical work builds on the idea of related diversification (Boschma and Frenken, 2011): 

comparative regional advantages in specific green technologies and sectors can be built on top of 

existing strengths in related technologies and sectors. Accordingly, the first step in our analysis is to 

identify regional green technology potential based on the relatedness to green technologies of 

current regional comparative advantages. In order to identify potential advantages, we refer to the 

framework conceptualised in Hausmann et al (2019), building on the regression-based forecasting 

technique in Zachmann and Roth (2018), to estimate future potential advantage at the regional level, 

and we focus specifically on green technologies. 

The second step in our analysis focuses on identifying policies that can help to realise regional 

potential in low-carbon technologies. A growing body of empirical literature is studying the policy 

relevance of Smart Specialisation, and regional innovation. Boschma and Gianelle (2014) argued that 

an experienced entrepreneurial base, labour mobility across related industries, and inter-regional 

collaboration are factors for success in the diversification process. Santoalha and Boschma (2020) 

confirmed that the presence of green-related capabilities in a region, and political support for green 

development at the regional level, can foster innovation. Steen et al (2016) found that lack of political 

support for green objectives, also at the national level, is a barrier to regional innovation. Crespo et al 

(2017), explained how “developing new growth paths in related industries or technological domains 

increases the probability of regional competitive advantage because the shorter cognitive distance 

enhances mutual learning, knowledge spillovers and actors’ redeployment of skills from one domain 

to another.”  

In the second stage of our research we investigate observed regional characteristics, from labour 

markets to policy and institutional aspects, which might lead regions to create, realise and exploit this 

potential. We use an innovative methodology and a novel dataset to do so. We essentially ask: which 

labour market, economic and demographic conditions are associated, together with potential 

specialisation, with stronger relative technological advantage? 

Hence, our analysis is based on a two-stage approach in which we first estimate potential and 

revealed green specialisation, and subsequently select labour market, demographic and economic 

variables that are associated with it.  

The paper proceeds as follows: section 2 explains the data sources used, technological definitions 

and regionalisation of patents. In section 3, we build an empirical strategy to estimate regional 

technological advantage, and use a regression-based technique to estimate potential advantage. 
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Section 4 explains our methodology for the second stage regressions in which we perform a data-

driven selection of variables. In section 5, we discuss limitations and results. Section 6 concludes and 

discusses possible policy implications.  

2 Data 

In the field of innovation economics, the most widely-used source of data is patents statistics. 

Patents are not only an indicator of technological specialisation in innovation activities, but also a 

proxy for regional economies’ sectoral specialisations. The PATSTAT database contains information 

gathered from statistical offices worldwide, and is commonly analysed as a proxy for innovation 

activity. The advantage of this data is that it contains very granular information, covering full patents 

texts, as well as inventor-level data.  

However, a well-known issue in the use of PATSTAT for geographical analysis is missing information, 

especially at sub-national level. We exploit the Organisation for Economic Co-operation and 

Development’s REGPAT database, a plugin for the PATSTAT database with enhanced geocoding, 

providing information consistently geocoded at the regional level. The number of patents attributed to 

a region is based on the location of patent inventors that applied to the European Patent Office or for 

international patents under the Patent Cooperation Treaty (PCT). The earliest application of individual 

patent families is used and attributed in fractions to all inventor countries and technology codes. 

REGPAT contains patents listed under the Patent Cooperation Treaty and the European Patent Office. 

We combine the patents from both sources, preferring EPO to PCT, by keeping the PCT entries only 

where the patent is not filed under both.  

In terms of technological definitions, patents are classified under different technological classes: 

under the Cooperative Patent Classification (CPC) scheme and the International Patent Classification 

(IPC). These schemes provide a very granular product identification, which we can aggregate in a 

tailored technological definition. We selected the definition of low-carbon technologies based on the 

Joint Research Centre’s definition, as in Fiorini et al (2017). CPC codes are grouped for 14 

technologies, namely solar panels, hydrogen-related technologies, solar and thermal energy, wind 

energy, hydro energy, energy management, efficient lighting, efficient heating and cooling, 

combustion, residential insulation, bio-fuels, batteries, electric cars, efficient rail transport and 

nuclear energy. The list of relevant CPC-Y codes is in table A.1 of the Appendix. We use IPC definitions 

for all the technologies and we use only the Y class CPC codes to identify low-carbon technologies. 
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In the following sections, we provide details about the estimations of revealed technological 

advantage and potential technological advantage, which will be included respectively in the left and 

right-hand sides of our final dataset. Meanwhile, the economic, demographic and labour market 

variables included in the second part of the analysis are based on the full Eurostat and Urban Data 

Platform1 databases, and cover a very wind range of fields. We discuss these sources in detail in 

section 4. 

3 Empirical strategy 

3.1 Estimation of potential advantage 

First, we define the technological advantage of regions in specific technologies. In this section, we 

largely build on the previous work of Zachmann and Roth (2018), which offered a detailed description 

of the steps involved. The main difference is in the geographical scope of the estimations. While 

Zachmann and Roth (2018) worked at the national level, we work here on the NUTS22 level. 

We start from the definition of Revealed Technological Advantage (RTA), calculating the relative 

specialisation in patents of a region. This measure is based on the same concept as the Balassa-

inspired measures of Revealed Comparative Advantage (RCA), which are built on export, rather than 

patent, data. These measures ‘standardise’ patent counts, indicating the relative specialisation of a 

region in a particular technology. Formally, the revealed technological advantage in for a region is a 

fraction of two shares: 

(1) 

𝑅𝑅𝑅𝑅𝑅𝑅 =  

𝑥𝑥𝑖𝑖𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖,𝑙𝑙

 

where: 

xil is the number of patents of technology i in region l  

xil is the sum of patents of technology i across all regions  

xil is the sum of all patents across all regions 

1  The Urban Data Platform was created jointly by the European’s Commission Joint Research Center and the 
Directorate General for Regional and Urban Policy (DG REGIO). Available at: https://urban.jrc.ec.europa.eu. 

2  Each of the 244 NUTS2 regions has between 800,000 and 3 million inhabitants. 
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For the subsequent estimations, all the RTAs are generated while excluding green technologies from 

the sample. RTAs are, in turn, standardised in the following way: 

(2) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑅𝑅𝑅𝑅𝑅𝑅 − 1
𝑅𝑅𝑅𝑅𝑅𝑅 + 1 + 1

2
 

where RTA is derived as in equation (1). 

In order to estimate the potential revealed technological advantage of regions (pRTA), we apply the 

methodology inspired by Hausmann et al (2019) and thus bring the work of Zachmann and Roth 

(2018) to a sub-national level.  

This methodology assumes a relationship between the comparative advantage of different products 

or technologies. For instance, a region’s comparative strength in one product can imply a potential 

strength in another product. This is because there can be a link, a similarity, either between the pair of 

products or between the pair of regions. The intuition behind potential advantage is the attempt to 

estimate correlations between regions and technologies that are based on latent factors that are 

unknown a priori. For example, the latent factors that make regions similar could be factor costs, 

infrastructures, geography or domestic market sizes. These correlations could also be based on 

technological links (eg similar value chains, technological spill-overs, degree of complexity). 

We structure the dataset in three non-overlapping five-year sums of patent counts, from 2001 to 

2016, in order to smooth out the volatility in patent activity. We build location-technology cross-

tables at four geographical levels (country, NUTS2 region, inventor, application). We apply equation 

(1) and (2) to the cross-tables, and obtain RTAs.  

As in Roth and Zachmann (2018), we construct 18 different region-technology proximity networks. 

We borrow the definitions of the technological networks from two papers (Yan and Luo, 2017; Stellner, 

2014). The methods applied include simple correlations, minimum pairwise conditional probabilities, 

class-to-class cosine similarity, class-to-patent cosine similarity, co-classification, co-occurrence to 

generate the networks on the four different aggregations, geographic (regions and countries) and 

personal (inventors and applicants). 

At this stage, we obtain 18 different matrices of technology-region proximity measures, of 258 NUTS2 

regions and 637 technology codes. In a final step, all the matrices that contain the weighted product 

and region densities are stacked vertically, in order to construct two column vectors of IPC class-
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regions pairs. The column vectors represent 18 weighted networks of technologies and regions 

(Hidalgo et al, 2007). These 18 networks are very collinear, and contain largely similar information, 

and summarise the latent and observed characteristics of the networks. We apply a Principal 

Component Analysis and reduce the dimensionality from 18 to 2 principal components. Figure 1 

illustrates the portion of variance explained by the principal components, based on the 18 

technology-region networks. The correlation between the networks and the first principal component 

is on average higher than 0.93. The procedure of bringing the dataset from patent counts to principal 

components is applied separately for all the different, non-overlapping time stacks, in which we 

originally divided REGPAT data. 

At this stage, we can proceed with the estimation of potential advantage, using a regression-based 

technique as in Roth and Zachmann (2018). For our estimates, we make use of a zero-inflated beta 

regression. The use of a zero-inflated model is necessary in order to model this information, which 

has been aggregated from largely sparse matrices (Ospina and Ferrari, 2012). First, we regress the 

principal components in t1 on t2 RTA values. Once the parameters of this model are estimated, we 

subsequently fit them on the matrices at t2 and obtain the predicted values for technological 

advantage for t3.  

Figure 1: Principal components of 18 technology-aggregation networks 

Source: Bruegel. 

As per the implementation, we rely on the R package GAMLSS and its function BEZI. We repeat the 

same approach using linear regressions in order to have a baseline evaluation of our model. The zero-

inflated beta regressions show a mean squared error of 0.05 compared to the baseline, and an 

average R2, for all the stacks, not higher than 0.35. The statistics, if compared to Roth and Zachmann 
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(2018), which performed a country-level analysis, exhibit poorer performance of our regional models. 

We discuss the implications of this and possible ways to improve the models in section 5.1. 

The predicted data resulting from fitting the regressions, will be at t3, and represents our measure of 

potential technological advantage (pRTA). In the following section, we present some of our pRTA 

estimations, and give examples of proximity network between regions and technologies.  

3.2 The geographical dimension of potential advantage  

In this section, we explore and visually present the estimated pRTAs, which will be used as regressors 

in the next part of the paper. After calculating the revealed technological advantage and estimating 

the potential technological advantage, we observe that certain low-carbon products show a pattern of 

strong concentration in few regions, such as Rhône-Alpes in France, Dresden and Stuttgart in 

Germany and Lombardy in Italy: well-known industrial districts and technological hubs. This 

phenomenon is even more evident when looking at patent counts themselves. 

Over time, we observe a general increase in low-carbon technological advantage across Europe, 

although our measure of RTA seems to be quite volatile, despite the five-year smoothing already 

mentioned. At this stage, in fact, the trade-off is between the granularity of patent data at the regional 

level, the time dimension necessary to create a panel, and our technological definitions. The 

necessity of defining peculiar groups of patents as ‘technologies’, combined with the sliced time 

dimension, spurs the volatility in patent activity, especially when observed as RTA. In terms of 

innovation specialisation, certain technologies, such as nuclear, remain exclusive to a smaller 

number of regions that are already strong in nuclear technology innovation, as shown in Figure 3. 

Other technologies, such as wind and hydro power, appear to be promising for many regions. 

In Figure 2, it is possible to observe how wind-related technologies had similar geographical 

distribution for RTAs in 2013 as for potential RTAs for the successive period, 2019. Countries including 

Denmark, Germany and Spain have at least one region with some degree of specialisation in wind that 

resulted in a country-level advantage in 2013. Some regions, instead, exhibit strong potential future 

advantage in wind, despite only modest actual advantage in 2013. This is the case across Scotland, 

or the Pays de la Loire in the north-west of France. 

This, most likely, has to do with the technological complexity involved in producing these products. As 

mentioned, the other effect at play is the trade-off between technology definitions, time and 

categories. Because of this effect, nuclear technologies shows much less patenting activity 
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compared to patenting, for example, in solar panels. While the production of products for nuclear 

power plants involves many sophisticated technologies, the entry barrier for companies is high. Other 

low-carbon technologies allow easier access for newcomers and thus a wider spread over several 

countries. Industrial hubs have an advantage or a potential advantage in many low-carbon 

technologies, as these regions’ strengths in various technology areas provide a lot of points of 

contact also for low-carbon technologies.  

Figure 2: Revealed and potential technological advantage in wind technologies 

 

 (a) RTA 2013 (b) pRTA 2019 

Source: Bruegel. 
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Figure 3: Revealed and potential technological advantage in nuclear technologies  

 

 (a) RTA 2013 (b) pRTA 2019 

Source: Bruegel. 

In the following maps, we present the estimates for pRTA values for different technologies, as of 

2019.  

Figure 4: Potential technological advantage in 2019 

 

 (a) pRTA 2019: batteries (b) pRTA 2019: electric vehicles 
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 (c) pRTA 2019: solar and thermal energy (d) pRTA 2019: insulation technologies 

Source: Bruegel. 

In very complex and typically clustered technologies, such as electric vehicles, our measure of 

potential advantage seems to be more clustered in highly innovative regions. We correlate the 

measures for pRTA with the European Commission’s innovation scoreboard for the same year. The 

scoreboard assesses how innovative regions are, based on a set of indicators, including patent 

activity, workforce education, data from the Community Innovation Survey and other information. 

In the first column of Table 1, we present the correlation coefficients, for all the low-carbon 

technologies observed, between the Commission’s indicator for 2019, and the pRTA for the same 

year. In the second column, we present the correlation between the same indicator and the RTA 

values, both in 2015. We find high correlation with pRTA for most of the technologies, particularly the 

most innovative (batteries, electric vehicles and energy management technologies). The volatility 

issues for the RTA calculations could explain the lower correlation with RTA. Interestingly, however, 

the discrepancy in correlations could also indicate that our pRTA measure is, indeed, picking up some 

of those latent factors, ‘hidden’ in patent data, and observed by the innovation scoreboard. 
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Table1: Correlations between revealed and potential advantage with the Regional Innovation 

Index (European Commission, 2019), across low-carbon technologies 

 
pRTA (2019) RTA (2015) 

Energy managament 0.67 0.28 
Solar PV 0.62 0.37 
Batteries 0.60 0.27 
Electric vehicles 0.59 0.34 
Efficient lighting 0.59 0.21 
Biofuels 0.58 0.46 
Efficient heating/cooling 0.54 0.32 
Efficient combustion 0.53 0.38 
Insulation 0.49 0.30 
Rail 0.39 0.28 
Solar thermal 0.34 0.27 
Wind 0.29 0.24 
Nuclear 0.24 0.25 
Hydro 0.10 0.18 
Source: Bruegel. 

3.3 European networks of green innovation 

The networks of proximity that we estimated, as described in section 3.1, can be very informative 

about the state of low-carbon innovation in Europe. A growing body of literature applies network 

theory to patent analysis. The technological space is a useful tool for visualisation of technological 

proximity and might allow forecasts of the direction of technology development in for 

countries/regions with strength in specific technology areas. Mariani et al (2019) focused on patent 

citations and used network centrality for technological forecasting. Wu and Yao (2012) created and 

tested on a specific technical field an artificial intelligence-based method for network analysis, 

combining text-mining techniques. Song et al (2016) applied overlay patent networks to analyse the 

design space evolution by looking at co-references of patents, in order to understand the possible 

directions of the most likely expansion paths. 

In this section, we start by looking at the technological space, with a focus on low-carbon 

technologies. The technological space resembles the concept of the product space (Hidalgo et al, 

2007), showing to what extent different technologies are related, based on how often they are 

patented together. For this, we keep the definition of proximity as simple as possible, using a simple 

co-patenting figure. Figure 5 plots the European technological space. This graph is built by 

constructing a technology-technology matrix between of IPC classes for all the technologies and Y-
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CPC classes for low-carbon ones. Each node is a 4-digit IPC class or a green technology, and the 

weight of the nodes is given by the correlations between RTAs in different regions, for the 2013 time 

stack. 

Figure 5: European product space based on patents registered in REGPAT 2018 

 

Source: Bruegel. Note: the network is built on the RTA correlations between IPC 1-digit technological classes and low-

carbon technologies based on the relevant CPC Y-codes. 

Since the network is extremely dense, as all technologies are connected to some degree to one 

another, we present here a visualization of the Maximum Spanning Tree (the graph that maximises 

the total weights of the edges). We can observe how solar panels, energy management, batteries and 

electric cars seem to have good proximity in the network. Nuclear technologies are closer to classes G 

and F (physics and mechanical and energy engineering). As expected, rail technologies position 

close to the class B (performing operations, transportation). 
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Figure 6: Proximity of NUTS2 regions based on revealed comparative advantage in 2013 

 

Source: Bruegel. Note: nodes are weighted by a measure of centrality in the graph (betweenness), edges represent 

correlations in RTA across 637 technological categories. 

In the same way, this matrix can be inverted, to show how close regions are. The proximity of regions 

is based on their technological proximity. In Figure 6, we create a region-region network, in order to 

understand the proximity of European regions based on the correlations between the technological 

structures of their economies. The size of the nodes represents their degrees (number of connections 

with other nodes). A general first observation from this graph is that European regions have product 

mixes which go beyond country borders. Looking closer at the division, we notice the wedge between 

productive regions (bottom-left clusters) and less productive regions (mid-right branch). The regions 

that cluster on the left around Veneto (ITH3) include highly-productive regions, powertrains of 

European economy, such as Upper Franconia (DE24) or Rhône-Alpes (FR71). Here, the regions of 

northern Italy and most of the highly industrialized regions of the Germany branch out. Another 

interesting cluster to the bottom-right: the Dutch region of Noord-Brabant (NL41), a renowned high-

tech region, is close to East Anglia (UKH1), the Danish capital region of Hovedstaden (DK01) and Ile 
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de France (FR10). These visualisations are interesting, although more research is needed in order to 

properly assess the quality and robustness of the clusters, attempting to measure proximities with 

different metrics. 

This network is based on the relative technological advantage of all the 637 4-digit IPC codes, and 

thus reflects the general innovation activity of regions. In order to observe how European regions 

collaborate in patenting low-carbon technologies, and observe green industrial clusters, we build 

networks based on simple co-patenting figures, rather than minimum pairwise correlation probability. 

Figure 7: Co-patenting of European regions in low-carbon technologies 

 
Source: Bruegel. 

In Figure 7, we plot a graph based only on low-carbon technologies, in which the size of the nodes is 

relative to the number of patent applications, and the weight of the edges (i.e. the lines connecting 

the circles) represents the number of co-patents between two regions. The network is then clustered 

based on its modularity, a structural measure that tells us how well the graph can be divided into 

different modules. Specifically, the OpenOrd algorithm (Martin et al, 2011) is applied. 
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Two clusters emerge, although quite tightly connected. One is dominated by Ile de France (FR10), the 

region of the capital of France. The other is dominated by Germany, with Oberbayern (DE21) and 

Stuttgart (DE11). The United Kingdom, the Netherlands, Belgium and Sweden, among other, seem to 

be clustered more tightly with France, whereas on the other side we see Italy, Germany, Slovakia and 

Austria. The finding of highly concentrated centres of green innovation is in line with the literature. 

While the agglomeration phenomena of technological development are well-known, recent studies 

have focused on green technologies in particular. Barbieri et al (2020) found that the nature of green 

technologies is more complex than non-green technologies. This is illustrated by the agglomeration of 

low-carbon innovation in high-tech centres such as Paris and Oberbayern. In fact, this is in line with 

the path-dependency nature of complex technological products, and is logically related to the 

knowledge base of the region, and spill-over effects across different industries. 

In addition, we compute the same co-patenting networks considering one low-carbon technology at a 

time. In the four panels of Figure 8, we show the examples of batteries, electric vehicles, wind and 

nuclear technologies. Which are the clusters of innovations? In the case of batteries and electric 

vehicles, we can see the clusters in France and Germany, whereas for wind, Denmark and Germany 

are the most central. In these three panels, we filter out the nodes that have no co-patenting and a 

small number of patents. For nuclear we cannot do this, as most nuclear-patenting regions do not co-

patent nuclear patents with other nuclear-patenting regions. Moreover, observed nuclear co-patenting 

reflects national boundaries. 

Figure 8: Co-patenting for European regions based on applicant’s location, 1990-2016

 

 (a) Batteries (b) Electric Vehicles 
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(d) Nuclear 

Source: Bruegel. 

4 Dimensionality reduction: a data-driven selection of variables 

After having calculated the RTA and estimated the pRTA we can now assess which labour market, 

economic and other regional characteristics are associated, together with potential specialisation, with 

a higher green RTA. 

We investigate this by making use of a large, novel dataset of regional characteristics, and an 

exploratory approach. We begin with an agnostic view about what regional characteristics could be 

associated with RTA. First, we build a wide dataset at the NUTS2 level with all the variables present in 

the Eurostat database and in the Joint Research Centre’s Urban Data Platform. The time dimension 

corresponds to the three-year non-overlapping period of the patents-based measures. Empirically, we 

rely on dimensionality reduction algorithms. We aim at understanding the association between our 

measures for revealed advantage and potential advantage in a region, and the large number of 

regressors on the right-hand side. We select relevant variables in the dataset by applying an elastic net 

regularisation to isolate the significantly associated coefficients. 

In section 4.1, we explain the imputation methodology that we apply to the panel dataset at the NUTS2 

level, in order to fill in the gaps across regions and time. In section 4.2, we present our elastic net 

regularisation for a selection of data-driven variables. 
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4.1 Data and imputation methodology 

We start to build our database with an indiscriminate systematisation of all the NUTS2-level variables 

present in the Eurostat Database and the Cambridge Econometrics data, publicly available at the Joint 

Research Centre’s Urban Data Platform. Data collection of regional statistics at the NUTS2 level, though 

improving, is highly inconsistent. As a result, many of the data sheets used to generate our dataset are 

incomplete in terms of time and location. 

As a consequence of the indiscriminate scraping and querying techniques used to generate it, the 

dataset is incomplete and highly multicollinear, containing several repeated and aggregated 

indicators. Proper utilisation of NUTS2 regional statistics, especially in cases where full datasets are 

necessary, is therefore a challenge given such complications. Limitations will be discussed further in 

section 5.1. 

Regularised regression techniques, such as the widely-known LASSO regressions, are often used to 

reduce dimensionality through variable selection. However, these techniques fail in the presence of 

missing data, making complete datasets necessary. Therefore, we choose to impute missing values 

before using any data-driven variable selection technique. 

Multiple Imputation by Chained Equations (MICE) is a data imputation algorithm which can attempt to 

capture the uncertainty associated with missing data values by “randomly drawing multiple 

imputations from a distribution of imputations and also by introducing additional error variance to 

each imputation” (Lodder, 2014). MICE makes the assumption that data is missing at random (MAR), 

meaning that the presence of an underlying relationship between the propensity of a region to be 

missing data and the value of the missing data causes any results taken from imputation to be 

problematic (ie due to estimator bias). Additionally, MICE fails when imputing on non-invertible 

matrices. Therefore, it is important to reduce collinearity as much as possible prior to imputation. 

Given the poor performance of advanced imputation methods on high-dimensional low-rank matrices, 

we first hand-select indicators based on the domain knowledge. We reduce the total number of 

collected indicators, with respect to the indiscriminate scraping, from 476 to 245, by removing, for 

example, similar measures of population density, broken down by different demographics. 

Additionally, we remove regions defined as extra NUTS2 regions (encoded with a ZZ). We also remove 

overseas territories (eg PT20 or FRY1) or regions with NUTS2 codes that have been replaced (eg UKI1 

or IE01), but still persist in Eurostat or Urban Data Platform databases.  
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Further, these methods often utilise linear regressions to estimate missing values and lose a great 

deal of stability above certain thresholds of absence. Addo (2018) showed that MICE imputation 

using non-Bayesian linear regression exhibits stability for datasets missing up to 50 percent of 

observations. For our purposes, we place this threshold at 30 percent to get a dataset of 110 

indicators for 258 NUTS2 regions. 

Figure 9: Visualisation of dataset with missing data shown in white 

 

Source: Bruegel. Note: horizontal patterns of absence indicate data missing across regions while vertical patterns indicate 

absence within a region. 

Using the Python missing data visualisation package missingno, we examine our dataset for patterns 

which might invalidate the MAR assumption. Investigation shows that several areas of absence can 

be attributed to lack of availability (ie Denmark in 2005). Given these patterns and the completeness 

of the remaining data, we proceed under MAR assumptions and impute with MICE. 

In line with MICE common practice, we first allow the algorithm to identify constant or collinear 

variables which could present problems during the imputation step. Three covariates are identified as 

being collinear and are removed. We then impute using MICE using non-Bayesian linear regression. 

See Figure 10 for histograms showing the results of imputation on selected covariates. 
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Figure 10: Distributions of selected variables before and after imputation 

 (c) 10c (d) 10d 

 

 (a) 10a (b) 10b 

 

Source: Bruegel. 

4.2 Dimensionality reduction 

After using MICE imputation to fill in the gaps without biasing the distributions of the variables, we 

apply elastic net regularisation to the dataset. To be able to assess which regional characteristics 

(and potentially regional policies) might be promising to engineer regional specialisation, we explore 

the relationship between current specialisation in green technologies on the one hand, and past 

potential specialisation and current and past regional characteristics on the other hand. As 

mentioned, we use an experimental approach, more in line with a machine-learning exercise rather 
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than economic modelling. Therefore, we do not seek to make any causal inference at this stage, but 

only to look at associations. Future research should encompass causality.  

We build a dataset based on four time stacks of RTAs and pRTAs estimated for non-overlapping 

periods of three years (2006, 2009, 2012, 2015). We aim to observe, row-wise (hence, for each 

region r at time t), the potential in that same technology at t-1, in order to account for the path 

dependency in green technologies. Including both the Eurostat and Urban data platforms, it contains 

1032 observations and 110 variables, after the first selection from the Eurostat database to reduce 

multicollinearity, filtering explained in the previous paragraph. 

We define RTA, an observed advantage for the low-carbon technology i in region r at time t, as a 

function of all the right-hand side variables. In turn, the right hand side is composed of all the 

indicators at time t (first term), t-1 (second term) and t-2 (third term), as well as potential advantage 

for that same technology in t-1: 

(3) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟,𝑡𝑡,𝑖𝑖 =  β0 +  �ω𝑘𝑘𝑥𝑥𝑟𝑟,𝑡𝑡,𝑖𝑖,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+  �γ𝑘𝑘𝑥𝑥𝑟𝑟,𝑡𝑡−1,𝑖𝑖,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+  �θ𝑘𝑘𝑥𝑥𝑟𝑟,𝑡𝑡−2,𝑖𝑖,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 +  θp𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟,𝑡𝑡−1,𝑖𝑖 

Where: 

r = 258 (NUTS2 regions) 

i = Low-carbon technology  

t = 3 years non overlapping timestack 

K = 110 

Our empirical strategy aims at establishing which of the coefficients is significantly associated with 

RTA. We implement this specification using a regularisation technique. The two most common 

applications of regularisation regression are LASSO (Least Absolute Shrinkage and Selection 

Operator) and Ridge regressions. The intuition behind these techniques is to apply a penalty score to 

the magnitude of the coefficients of an OLS regression, maximising the relevant ones and shrinking 

the others to 0. 

In the literature, there are two typical definitions of regularisation techniques: L1 and L2. The L1 type 

is known as Ridge regression, while L2 is known as LASSO regression. The main difference between 

the models is in the application of the ‘penalty factor’ to the cost function. LASSO regularisations can 
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shrink coefficients all the way down to zero, performing a real variable selection. However, in 

presence of a large number of multicollinear variables, the selection of the feature is done randomly. 

On the other hand, Ridge can handle the issue of multicollinearity without selecting variables at 

random, but performs poorly with a high number of dimensions.  

Elastic net regularisation combines L1 and L2 approaches, overcoming the respective limitations. 

This method is more flexible to our purpose, being able to better handle the high multi-dimensionality 

and collinearity of our dataset. In order to estimate the coefficients for the right-hand side, we first 

subset the panel to four cross-sectional datasets based on the 2006, 2009, 2012 and 2015 stacks.  

We make use of the ElasticNetCV module of the python library sklearn to perform the regularisation. 

The module allows an automatic choice of the L1-L2 ratio, influencing the weight given to each 

penalty factor, by feeding in an array of possible values. The L1-L2 ratio ranges from 0 to 1, and tells 

how skewed the model should be towards LASSO or Ridge. The array chosen is skewed towards the 

LASSO-type regression, including more values above 0.5 than below. The ElasticNetCV library 

optimises the parameter selection based on a typical 10-fold cross-validation approach. In the same 

fashion, the alpha level (overall magnitude of the penalty score) is also selected.  

Figure 11 shows the results of the regularisation for electric vehicles, for 2012 and 2015. On the 

horizontal axis we plot the 110 coefficients estimated, and on the vertical axis their magnitude. The 

coefficient distancing from the others on the right-hand side is the potential technological advantage 

(pRTA) at t-1. The representation in Figure 11, represents the results of the regularisation: on the y-

axis we can see the magnitude of the coefficients for the 2012 (in yellow), and for the 2015 (in blue) 

time stacks. 
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Figure 11: Results of the Elastic net regularization where for electric vehicles in the 2012 (yellow) 

and 2015 stacks (blue) 

 

Source: Bruegel. 

After applying the regularisation to each low-carbon technology, we obtain a list of significant 

variables. These variables are associated with RTA for a low-carbon technology, with non-zero 

coefficients (both negative and positive). We combine together a count of all the ‘surviving’ variables. 

Tables 3 and 4 in the appendix present the results respectively for the 2012 and 2015 cross-

sections. We provide a count of surviving variables at time t, t-1 and t-2, and in total. Potential 

advantages at t-1 are found to be always the highest-ranking coefficients, and are omitted from the 

tables. As expected, the variables surviving more often are related to the presence of a highly-

educated labour force, higher wages and people employed in scientific fields. We discuss these 

results in the next section.  

At this stage, the count of surviving variables is only based on the separate cross-sectional exercises. 

The panel structure is not exploited, as the cross-sections are considered separately.  

In order to observe time-varying effects of these variables, we rescale the panel dataset to have a 

mean of zero, following a two-way fixed effects approach as in Imai and Kim (2020). However, unlike 

the two-way methodology, the panel is only rescaled for region-fixed effects.  
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We subtract from each variable the average value for that region over the year, on a region-time basis. 

Subsequently, we perform an elastic net regularisation, similar to the previous estimates, this time 

under the assumption of fixed effects estimation. We rely on the R library glinternet for this 

implementation. The results of the fixed effects regularisation are presented in Table 5 in the 

appendix. The R2 values yielding from this model are all lower than 0.5 percent, suggesting that the 

variation in RTA comes more from cross-sectional differences rather than time-varying effects. It is not 

possible to perform regularisations that include interaction terms, in this fixed effects setup, as 

explained by Giesselmann and Schmidt-Catran (2018). 

5 Results 

5.1 Variables that associate with RTA 

Tables 2, and 3 (set out in more length in the appendix), summarise the results of the regularization 

via elastic net, by showing the number of times a coefficient is found to be non-zero, at time t, t-1, t-2 

and in total. None of our results are causally identified, and should only be read as associations. The 

variable that survives the greatest number of times is the activity rate (labour participation) of people 

that have an ISCED level of education3, higher than the upper secondary level. 

Table 2: Cross-sectional estimation 2012 

 
t t-1 t-2 all 

Activity rate of population 15 16 21 52 
Total duration of employment 13 21 14 48 
Scientists and engineers 4 7 7 18 
HH Paid current taxes on income wealth etc. mil EUR 5 6 5 16 
HH Social benefits other than social transfers in kind recived mil EUR 5 8 3 16 
Persons employed in science and technology 8 2 4 14 
Long-term unemployment (12 months or longer) in thousands 6 3 5 14 
Unemployment rate by age 4 5 5 14 
Highest counts of coefficient survival for the 2012 stack, in an elastic net implementation. 

Source: Bruegel. 

  

3  International Standard Classification of Education, classified by UNESCO. 
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Table 3: Cross-sectional estimation 2015 

 
t t-1 t-2 all 

Activity rates of population 12 14 13 39 
Total duration of employment 11 12 10 33 
Scientists and engineers 6 7 5 18 
Average number of usual weekly hours in main job by age in hours 7 4 5 16 
Persons employed in science and technology 8 4 4 16 
HH Paid current taxes on income wealth etc. mil EUR 4 6 4 14 
Long term unemployment (12 months or longer) in thousands 7 2 4 13 
Highest counts of coefficient survival for the 2012 stack, in an elastic net implementation. 

Source: Bruegel. 

A longer duration of employment is also associated positively in many of the specifications with the 

advantage in low-carbon technologies. The number of engineers and scientists is also significant. In 

general, higher educational attainments of the population are associated with more innovation in 

green technologies. We also find some evidence of a positive association with tertiary educational 

attainment and (lower) unemployment rates of women. 

In addition, different measures for R&D expenditure survive for all the green technologies. Both 

private and public sector spending result from our analysis, and seem to appear more often at time t 

rather than as a lag. The measure that scores higher in our framework, for the fixed effects model, is 

the percentage of GDP spent by the government on R&D. Intramural expenditure, defined by the OECD 

as the: ”amount of money spent on R&D that is performed within a reporting unit” (Frascati Manual, 

2015). In a causal model, future research shall try to establish the precise relationship between R&D 

expenditure in the private sector, in higher education institutions and companies.  

Tables 4 and 5, meanwhile, present the counts of coefficients indicated by the regularisation 

procedure, one-way demeaned panel approach discussed in the previous section. Table 4 

summarises the main effects, while table 5 summarises the interaction factors that we force with 

pRTA at t-1. Overall, our fixed-effects regularisation approach does not yield different results 

compared to the cross-sectional specifications. As mentioned, the lower R2 could be indicative of a 

higher variation coming from the cross-regional rather than from time-varying effects.  

  

25



5.2 Limitations and further research 

The first stage of this paper used zero inflated beta regressions to predict pRTA values. Looking at the 

R2 statistics, not higher than 0.35, suggests that the modelling could be improved. pRTA values 

correlate at 0.4, on average, with RTA. The definition of the stacks (three years versus a longer period), 

appears to be less problematic than the modelling, as it does not seem to have too much effect on the 

volatility of the RTAs, although it makes the RTA measures probably more precise. In further research, 

a model with less volatile RTAs could yield more consistent predictions for pRTAs. 

The most significant limitation of this study is data availability at the NUTS2 level. Prior to 

dimensionality reduction, over 70 percent of indicators were missing more than 10 percent of 

observations. Of these, around 60 percent are time-lagged and 40 percent are non-lagged. As a 

consequence of this missing information, the 30 percent threshold used for keeping covariates is 

higher than preferred, and yet causes a large loss in availability of data eventually included. As 

mentioned, the performance of multiple imputation on high dimensional matrices with significant 

amounts of missing data is improving. However, the stability and quality of imputed values would 

obviously be much better given a more complete starting dataset. Moreover, because of the need to 

reduce dimensionality and missing data when using multiple imputation and regularised regression, 

we may be eliminating covariates or interactions among covariates and pRTA/RTA which have 

significant predictive power. For some covariates, though, the lack of data is so pervasive that the 

ability to achieve meaningful predictive power is precluded. Better and more consistent data collection 

at the regional level will help solve these dilemmas. 

Related to the data availability problem, MICE imputation assumes that the absence mechanism of 

the underlying data is MAR. This would imply, conditional on our observed values, that the values of 

missing data have no relation to the missing data. After reviewing the patterns of missing data by 

indicator, region and time, it could be argued that absence is heterogeneous in its mechanism, with 

some being MAR and others being missing not at random (MNAR). Given a high proportion of missing 

data being consolidated across similar indicators and time periods, we felt comfortable making a 

blanket MAR assumption; however, a much closer evaluation of missing data should be performed to 

confirm this assumption.  

Relatedly, adding different NUTS2 level datasets and types of variables could lead to different results. 

In particular, we believe that the use of datasets with diverse scopes and extensions could be 
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particularly relevant, notably focusing on the infrastructural dimension, market structure, 

competitiveness and institutions. 

Within our current framework, particularly exploratory and inductive, we have recognised the 

association between our right-hand side variables. Further research should try to establish with a 

causal approach the relationship between potential advantage in a region and its characteristics in 

terms of education, labour markets and public and private R&D spending. Furthermore, our empirical 

methodology should move forward to take into account time-varying effects and the interaction 

factors between potential and right-hand side variables.  

Although RTAs represent the regional specialisation in a technology, the same approach could make 

use of different models for patent counts (or other types of data that captures innovation) to conduct 

similar exercises. In this sense and given that our results point towards what is generally recognised 

as good policy for innovation, further research should also try to model a better counterfactual in 

terms of what distinguishes green innovation from general technological innovation, leading to more 

precise policy recommendations. 

6 Discussion and possible implications 

In this paper we have explored, at European regional level, the extent of innovation in low-carbon 

technologies. The motivation for our study stems from the necessity that European states will face in 

the years to come to foster innovation in low-carbon technologies. This is not just because of the need 

to contain global warming below 2◦C above pre-industrial levels. The decarbonisation process will 

also lead to a strong change in our production systems, and consequently in labour markets and 

industrial sectors. 

We started by exploring network-based methodologies to predict what advantages regions have in 

green technologies, based on observed specialisations, and latent, unobserved factors. The first 

contribution of our study is to provide an atlas of potential specialisation in green technologies for 

European NUTS2 regions, using regression-based forecasts. Furthermore, by clustering networks of 

co-patenting, we find that European regions have a good degree of in-country technological 

diversification, and that European policies could address smart specialisation in green technologies 

based on a clustering that is country-independent, and is linked to the local economic characteristics. 

Our representations of co-patenting figures across Europe seem to confirm the agglomeration effects 

present in innovation in the context of green technologies. In fact, as expected, a small number of 
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leading regions (notably in France and Germany) are pushing the frontier of green patenting. 

However, we find a large number of others have potential to develop a technological specialisation in 

the low-carbon technologies in the future.  

The European Union Green Deal aims to guide the decarbonisation process, while maintaining 

industrial competitiveness. Whereas these overarching objectives provide a clear direction, 

implementation should be informed at regional level, with strategic positioning of regions and low-

carbon technologies. Our contribution aims to provide a tool based on innovative methodologies, 

within the broader concept guiding Smart Specialisation Strategies, which focuses on green 

technologies. 

The second part of this study makes an exploratory contribution to the debate around a horizontal 

green industrial policy for regions, with a purely data-driven approach. Our results, despite being 

subject to strong methodological limitations, are generally in line with the common understanding of 

horizontal industrial policy. Clearly, endogeneity and reverse causality are the most difficult issues to 

overcome in empirical industrial policy exercises. Our contribution is a first attempt to investigate the 

role of horizontal green industrial policies for technological specialisation, making use of innovative 

methodologies at the regional level. 

We find an association between a regional advantage in low-carbon products for which there is a 

higher activity rate for people who have a level of education above upper secondary, and a greater 

presence of science and technology knowledge-intensive workers. In addition, in terms of labour 

markets, we have evidence of this association where the total duration of employment is longer. In 

terms of R&D spending the correlations seem to be significant for both public general spending in 

R&D, as well as expenditure in the private sector and in higher education institutions. Although our 

results are in line with those of the literature, our empirical approach has several significant 

limitations, and should be further refined in order to bring the data-driven selection of variables to a 

more rigorous third-stage approach aiming to establish robust causal linkages, from which we could 

infer more informed policy recommendations.  

Although other factors play a role in determining competitive advantage, technological specialisation 

can promote competitive industries, thereby shaping long-run growth dynamics. Policy can leverage 

strength in similar technologies by shaping innovation paths, strengthening learning capabilities, 

targeting sector-specific innovation regimes, and coordinating sectoral, national and regional policies. 
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Appendix 

A) List of CPC-Y codes for low-carbon technologies definitions 

Technology CPC-Y codes (patents) 

Solar PV Y02E1050, Y02E1052, Y02E1054, Y02E10541, Y02E10542, Y02E10543, Y02E10544, 
Y02E10545, Y02E10546, Y02E10547, Y02E10548, Y02E10549, 
Y02E1056, Y02E10563, Y02E10566, Y02E1058 

Solar Thermal Y02E1040, Y02E1041, Y02E1042, Y02E1043, Y02E1044, Y02E1045, Y02E1046, 
Y02E10465, Y02E1047 

Wind Y02E1070, Y02E1072, Y02E10721, Y02E10722, Y02E10723, Y02E10725, Y02E10726, 
Y02E10727, Y02E10728, Y02E1074, Y02E1076, Y02E10763, 
Y02E10766 

Hydro Y02E1020, Y02E1022, Y02E10223, Y02E10226, Y02E1028 

Energy management Y02B7030, Y02B7032, Y02B703208, Y02B703216, Y02B703225, Y02B703233, 
Y02B703241, Y02B70325, Y02B703258, Y02B703266, Y02B703275, 
Y02B703283, Y02B703291, Y02B7034, Y02B70343, Y02B70346 

Lighting Y02B2010, Y02B2012, Y02B20125, Y02B2014, Y02B20142, Y02B20144, Y02B20146, 
Y02B20148, Y02B2016, Y02B2018, Y02B20181, Y02B20183, 
Y02B20185, Y02B20186, Y02B20188, Y02B2019, Y02B2020, Y02B20202, Y02B20204, 
Y02B20206, Y02B20208, Y02B2022, Y02B2030, Y02B2032, Y02B20325, Y02B2034, 
Y02B20341, Y02B20342, Y02B20343, Y02B20345, Y02B20346, Y02B20347, 
Y02B20348, Y02B2036, Y02B2038, Y02B20383, Y02B20386, Y02B2040, Y02B2042, 
Y02B2044, Y02B20445, Y02B2046, 
Y02B2048, Y02B2070, Y02B2072 

Heating and cooling Y02B3008, Y02B3010, Y02B30102, Y02B30104, Y02B30106, Y02B30108, Y02B3012, 
Y02B30123, Y02B30126, Y02B3014, Y02B3016, Y02B3018, Y02B3020, Y02B3022, 
Y02B3024, Y02B3026, Y02B3028, Y02B3050, Y02B3052, Y02B3054, Y02B30542, 
Y02B30545, Y02B30547, Y02B3056, 
Y02B30563, Y02B30566, Y02B3060, Y02B3062, Y02B30625, Y02B3064, Y02B3066, 
Y02B3070, Y02B3072, Y02B3074, Y02B30741, Y02B30743, Y02B30745, Y02B30746, 
Y02B30748, Y02B3076, Y02B30762, Y02B30765, 
Y02B30767, Y02B3078, Y02B3080, Y02B3090, Y02B3092, Y02B3094 

Combustion Y02B8010, Y02B8012, Y02B8014, Y02B8020, Y02B8022, Y02B8024  
Y02B8026, Y02B8028, Y02B8030, Y02B8032, Y02B8034, Y02B8040, Y02B8050 

Residential insulation Y02E2010, Y02E2012, Y02E2014, Y02E2016, Y02E2018, Y02E2030, Y02E2032, 
Y02E20322, Y02E20324, Y02E20326, Y02E20328, Y02E2034, Y02E20342, 
Y02E20346, Y02E20348, Y02E2036, Y02E20363, Y02E20366, Y02E20185, 
Y02E20344 

Biofuels Y02E5010, Y02E5011, Y02E5012, Y02E5013, Y02E5014, Y02E5015, Y02E5016, 
Y02E5017, Y02E5018, Y02E5030, Y02E5032, Y02E5034, Y02E50343, 
Y02E50346 
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Batteries Y02E6012, Y02E60122, Y02E60124, Y02E60126, Y02E60128, Y02T1070, Y02T107005, 
Y02T107011, Y02T107016, Y02T107022, Y02T107027, Y02T107033, Y02T107038, 
Y02T107044, Y02T10705, Y02T107055, Y02T107061, Y02T107066, Y02T107072, 
Y02T107077, Y02T107083, Y02T107088, Y02T107094, Y02T1072, Y02T107208, 
Y02T107216, Y02T107225, Y02T107233, Y02T107241, Y02T10725, Y02T107258, 
Y02T107266, 
Y02T107275, Y02T107283, Y02T107291 

Electric cars Y02T1064, Y02T10641, Y02T10642, Y02T10643, Y02T10644, Y02T10645, Y02T10646, 
Y02T10647, Y02T10648, Y02T10649, Y02T1062, Y02T106204, Y02T106208, 
Y02T106213, Y02T106217, Y02T106221, Y02T106226, Y02T10623, Y02T106234, 
Y02T106239, Y02T106243, Y02T106247, 
Y02T106252, Y02T106256, Y02T10626, Y02T106265, Y02T106269, Y02T106273, 
Y02T106278, Y02T106282, Y02T106286, Y02T106291, 
Y02T106295 

Rail transport Y02T3000, Y02T3010, Y02T3012, Y02T3014, Y02T3016, Y02T3018, Y02T3030, 
Y02T3032, Y02T3034, Y02T3036, Y02T3038, Y02T3040, Y02T3042 

Nuclear Y02E3030, Y02E3031, Y02E3032, Y02E3033, Y02E3034, Y02E3035, Y02E3037, 
Y02E3038, Y02E3039, Y02E3040 

 
 

B) Potential in low-carbon technologies for EU regions (2018) 
 

 

 pRTA 2019 - Batteries pRTA 2019 - Electric Vehicles 
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 pRTA 2019 – Solar and thermal energy pRTA 2019 - Insulation technologies 

 

 

 pRTA 2019 - Biofuels pRTA 2019 - Heating and Cooling 
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 pRTA 2019 – Solar panels pRTA 2019 - Wind technologies 

 
C) Variables selection summary tables 
 
Table 2: Cross-sectional estimation 2012 

 
t t-1 t-2 all 

Activity rates by age education attainment level and citizenship  15 16 21 52 
Total duration 13 21 14 48 
Scientists and engineers 4 7 7 18 
HH paid current taxes on income wealth etc. € milliions 5 6 5 16 
HH social benefits other than social transfers in kind received € millions 5 8 3 16 
Persons employed in science and technology 8 2 4 14 
Long-term unemployment (12 months or longer) in thousands 6 3 5 14 
Unemployment rate by age 4 5 5 14 
Average number of usual weekly hours in main job by age in hours 6 1 5 12 
Participation rate in education and training (last 4 weeks) total age 25-64 0 6 5 11 
Gross domestic expenditure on R&D € millions government 5 6 0 11 
Self-employed persons 2 4 5 11 
HH net social contributions € millions 3 4 4 11 
Gross domestic expenditure on R&D, € millions business enterprise sector 6 4 0 10 
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Table 3: Cross-sectional estimation 2015 
t t-1 t-2 all 

Activity rates by age education attainment level and citizenship 12 14 13 39 
Total duration 11 12 10 33 
Scientists and engineers 6 7 5 18 
Average number of usual weekly hours in main job by age in hours 7 4 5 16 
Persons employed in science and technology 8 4 4 16 
HH paid current taxes on income wealth etc. € millions 4 6 4 14 
Long term unemployment (12 months or longer) in thousands 7 2 4 13 
Self-employed persons 3 2 6 11 
Proportion of population aged 20-39 4 2 5 11 
Participation rate in education and training (last 4 weeks) total age 25-64 0 6 5 11 
HH social benefits other than social transfers in kind received € millions 4 7 0 11 
Gross domestic expenditure on R&D € millions government 8 3 0 11 
Persons with tertiary education (ISCED) and/or employed in science and 
technology % of active population 

2 4 3 9 

Unemployment rate by age 2 5 2 9 

Table 4: Fixed effects estimator, main effects 
t t-1 t-2 all 

Total duration 12 12 17 41 

Activity rates ISCED>3 11 12 13 36 

Age dependency ratio (0-19 and over 60 to pop. aged 20-59) 4 5 5 14 

Scientists and engineers 6 4 4 14 

Long term unemployment (12 months or longer) in thousands 6 2 6 14 

Students (ISCED 5-6) at regional level - as % of total country level 
students (ISCED 5-6) 

0 6 7 13 

Persons employed in science and technology 8 3 2 13 

Gross domestic expenditure on R&D € millions business 
enterprise sector  

6 4 3 13 

Table 5: Fixed effects estimator, interactions 
t t-1 t-1 all 

Total duration of employment 0 2 3 5 
Activity rates ISCED >3 2 1 1 4 
HH Net social contributions € millions 0 1 1 2 
Self-employed persons 0 2 0 2 
Total R&D personnel business enterprise sector full-time 
equivalent (FTE) 1 1 0 2 
Unemployment Rate (Females) 2 0 0 2 
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