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1 Introduction 

 Inflation is often exposed to numerous macroeconomic shocks that pull it away from its mean, 

which is generally identified by the central bank’s inflation target. Shocks can be persistent or could 

have persistent effects on inflation because of, for example, nominal rigidities, leading to persistent 

deviations of inflation from its target. Knowing the persistence of these shocks and inflation deviations 

from target plays an essential role for the central bank whose primary aim is to achieve price stability. 

The adjustment of inflation towards its long-run level after a shock can be characterised by the speed 

with which it converges back to its mean. The greater this speed, the less complicated the central 

bank’s task of maintaining price stability. Inflation persistence is a measure of this convergence speed, 

based on different kinds of properties of the impulse response function within the model built to 

describe inflation.  

 Inflation persistence has been studied by various models, ranging from simple autoregressions 

to well-structured dynamic general equilibrium models. In studying univariate autoregressive time-

series models, many authors found very high persistence or even could not reject the hypothesis of a 

unit root for a 50-year long sample stretching from the post-second world war era, both in the United 

States and in the euro area. More recent studies have found that inflation series have several structural 

breaks1 and most of these could be explained by corresponding historical events, for example, the oil 

crises of the 1970s. When studying the properties of the estimated autoregressive models for sub-

periods identified by the break points, persistence turned out to be significantly smaller, particularly in 

the more recent periods. Hence, inflation persistence could be changing in time.  

 Naturally, a change in inflation persistence could be the result of (a) change in the type of 

underlying shocks, (b) change on the persistence of the underlying shocks, (c) change in the 

monetary policy reaction function, (d) change in the way the economy responds to shocks or 

monetary policy actions, or (e) the fact that a linear approximation of an otherwise non-linear 

underlying structure is poor. A univariate autoregressive model estimated on different samples cannot 

discriminate among these alternatives. Obviously, a time-varying coefficient autoregression also 

cannot discriminate among these alternatives, but allows to investigate changes in persistence more 

accurately and particularly, to highlight the dating and amplitude of breaks. Time-varying coefficient 

models were used for either or both the euro area and the US, for example, in Cogley and Sargent 

(2001, 2005), Dossche and Evaraert (2005) and Pivetta and Reis (2007). 

                                                 
1 Pivetta and Reis (2007) challenge this view and claims that IP was reasonably stable in the post second world war US.  
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 Although the analysis of inflation persistence in the euro area and the US has received much 

attention2, there has been very limited research regarding the central and eastern European (CEE) 

countries. For example, Cuestas and Harrison (2010) use five different unit root tests for 12 CEE 

countries during 1994-2007, while Ackrill and Coleman (2012) use a variety of unit root tests and tests 

for fractional integration for a different set of 12 CEE countries for the sample period 1994-2011. Both 

papers argue that such tests have an implication for inflation persistence. However, while a unit root in 

the inflation series obviously indicates full persistence (that is, all shock have permanent effects), but 

a rejection of the unit root in itself is not informative about the nature of inflation persistence. Franta, 

Saxa and Smidkova (2007) adopt a more sensible approach, based on Dossche and Evaraert (2005). 

Among others, they measure the magnitude of inflation persistence by incorporating the possibility of 

time-varying means, for four CEE countries for the period 1993-2006. 

 Understanding inflation persistence in CEE countries is not just crucial for the central banks of 

these countries for the conduct of monetary policy, but it also has implications for their future 

membership of the euro area. Similar persistence to that of the euro area will be essential for the 

optimality of the common monetary policy. The European Central Bank’s policy considers the euro-area 

average. Higher persistence in a country would imply that after an inflationary shock, inflation in this 

country will not be reduced parallel with the euro area’s aggregate inflation, but remain higher after the 

ECB has reversed monetary tightening when euro-area average inflation is on track to reach the 

inflation target. 

 Time-varying coefficient analysis of inflation persistence in CEE countries seems inevitable3. 

These countries went through substantial structural changes when transformed their economies and 

institutions from a socialist to a market one. The transformation process was a gradual one and the 

economies of these countries probably still changing in a faster pace than mature economies. These 

arguments imply that it is rather difficult to set a date from which constancy of the parameters could be 

assumed on safe grounds.  

 In this paper we study inflation persistence in twelve CEE countries (Albania, Bulgaria, Czech 

Republic, Estonia, Croatia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia), in 

comparison with the euro area and the US, using time-varying coefficient autoregressions. We estimate 

                                                 
2 Eurosystem central banks even set up an Inflation Persistence Network (IPN) and directed substantial resources for the 
study of various aspects of IP; see Altissimo, Ehrmann and Smets (2006) for a summary of IPN. A debate whether IP has 
declined in the US has also received much attention in the academic literature; see, for example Pivetta and Reis (2007) for 
a summary of the debate. 
3 There is also a strong case for applying time-varying coefficient methods for studying euro-area data for the pre-1999 
period. The euro area did not exist before 1999 and its data were constructed by aggregating country time series. It is rather 
likely that these constructed euro-area time series include structural breaks. 
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the time-varying coefficient models two ways: one is based on the maximum likelihood estimation of a 

state-space model with the help of the Kalman-filter, while the other is a related but less-known 

methodology, the Flexible Least Squares (FLS) estimator introduced by Kalaba and Tesfatsion (1988).  

 In Darvas and Varga (2012) we assessed the ability of these two methodologies to uncover the 

parameters of various autoregressive data generating processes using Monte Carlo methods. We found 

that neither the FLS, nor the Kalman-filter can uncover sudden changes in parameters, but when 

parameter changes are smoother, such as linear, sinusoid or even random walk changes in the 

parameters, the FLS with a weight parameter 100 works reasonably well and typically outperforms 

even the Kalman-smoother, which in turn performed better than the Kalman-filter. We therefore use the 

FLS with a weighing parameter 100, but due to the arbitrariness of the selection of the smoothing 

parameter of the FLS, we also use Kalman-filtering. 

 The rest of the paper is organised as follows. Section 2 briefly introduces the time-varying 

coefficient autoregression and sketches Kalman-filtering and the FLS. In section 3 we describe the data 

we use. Section 4 presents the empirical results for the twelve central and eastern European countries, 

the euro area and the US. Finally, the main results are summarised in section 5. 

2 Methodology 

 In this paper we use Kalman-filtering (Kalman, 1960) and the less frequently used Flexible Least 

Squares (FLS) introduced by Kalaba and Tesfatsion (1988) to estimate time-varying coefficient 

autoregressions. 

2.1 Time-varying coefficient autoregression 

 There are different measures of inflation persistence (see, for example, Fuhrer, 2010) of which 

the most common is the parameter of a first-order autoregression, or the sum of the autoregressive 

parameters of a higher order autoregression. We also adopt a higher order autoregression and allow the 

parameters to change in time: 

(1) yt = ρ0,t + ρ1,t yt-1 + ... + ρp,t yt-p + ut ,   t = 1,...,T, 

where ty  is an observed variable, ti ,ρ  denote the parameters which can change in time, and tu  is the 

error term. Since we use quarterly data, we allow for at most six lags in the autotergession and use the 

Box-Pierce and Ljung-Box statistics to determine the optimal length. Our measure of inflation 

persistence at time t is the sum of the autoregressive parameters: 
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where tι is the time-varying measure of inflation persistence. 

2.2 Time-varying coefficient methods 

 In Darvas and Varga (2012) we described Kalman-filtering and the FLS and also compared their 

ability in uncovering time-varying parameters using a Monte Carlo study, and therefore here we only 

briefly sketch these methods. 

 The FLS algorithm solves the time-varying linear regression problem with a minimal set of 

assumptions. Suppose yt is the time t realisation of a time series for which a time-varying coefficient 

model is to be fitted, 

(3) tttt uxy +′= β ,   t = 1, ...,T, 

where ( )tKtt xxx ,1,0 ,..., −=  denotes a 1×K vector of known exogenous regressors (which can also 

contain the lagged values of yt), ( )tKtt ,1,0 ,..., −= βββ  denotes the 1×K  vector of unknown 

coefficients to be estimated, which can change in time, and ut is the approximation error.  

 The two main assumptions of the method: 

(4) 0≈′− ttt xy β ,   t = 1, ...,T. 

(5) 01 ≈−+ tt ββ ,   t = 1,...,T-1. 

 That is, the prior measurement specification states that the residual errors of the regression are 

small, and the prior dynamic specification declares that the vector of coefficients evolves slowly over 

time. 

 The idea of the FLS method is to assign two types of residual error to each possible coefficient 

sequence estimate. A quadratic cost function is assumed: 
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where μ is the weighting parameter. The minimisation of this cost function for β, given any μ>0, leads 

to a unique estimate for β. Consequently, there are a continuum number of FLS solutions for a given set 



 5

of observations, depending on the weight parameter μ. The selection of the weighing parameter is a 

highly critical part of the FLS procedure, as the appropriate coefficient sequence lies somewhere 

between the most variable and the fully stable – OLS – solution.4 

 There is a close connection between the FLS and Kalman-filtering, as already described by 

Kalaba and Tesfatsion (1990). They emphasise that the two methods address conceptually distinct 

problems, but also prove that the Kalman-filter recurrence relations could be derived by means of 

simple intuitive cost considerations (similarly to FLS), without reliance on probabilistic arguments.  

 In a recent paper Montana et al (2009) shed new light on the relation of FLS to Kalman-filtering 

by adding mild probabilistic assumptions to FLS and weakening the assumptions behind the Kalman-

filter. Specifically, they assume that the errors to equations describing the observed variables and the 

time-varying coefficients have finite first and second moments. Formally speaking, the dynamic and 

measurement priors are expressed in the state and measurement equations of the model, 

respectively, as follows: 

(7) ttt ωββ +=+1 ,   t = 1,...,T-1, 

(8) tttt xy εβ +′= ,   t = 1,...,T. 

 In essence, the requirement that innovations ωt and εt are mutually and individually 

uncorrelated and have finite expected values and covariance matrices is close in spirit to the 

assumptions of FLS. The key difference is the randomness of the unknown parameter vector: recall that 

the smoothness prior of FLS does not require βt to be random walk – only the smooth change in time is 

postulated. 

 Montana et al (2009) first prove that the Kalman-filter recursions work perfectly well under this 

distribution free circumstance – in fact, the derivation is even simpler and does not require any matrix 

inversion which makes it easy to implement even in higher dimension spaces with long streams of 

observations. The authors also show that the recursive updating equations of the Kalman-filter are 

equivalent to those of FLS under the new assumptions and that maximising the likelihood function of 

the Kalman-filter is the same as minimising the quantity: 

                                                 
4 The solutions lie between two extremes. First, if μ approaches zero, the incompatibility cost function places absolutely no 
weight on the smoothness prior. This means that while the dynamic cost stays relatively large, the measurement cost will 
be brought down close to zero, resulting in a rather erratic sequence of estimates. Second, as μ becomes arbitrarily large, 
the cost function assigns all importance to the dynamic specification. This case yields the ordinary least squares (OLS) 
solution, because the dynamic costs will be zero when parameters do not change and therefore the measurement cost is 
minimised as in the OLS. 
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where Vω is the covariance matrix of the ωt errors of the parameter vector. The proof thus sheds light on 

the role of the μ smoothing parameter of FLS: comparing (11) to the definition (6) of incompatibility 

cost we get: 

(10) KIV 1−= μω , 

where IK is the KK ×  identity matrix. Not surprisingly, equation (10) underlines that the variance of 

the innovations of the estimated parameter vector of the FLS is inversely related to μ.  

 As mentioned earlier, we use FLS with μ = 100, considering the simulation results of Darvas and 

Varga (2012), and use Kalman-filtering as well. For both the FLS and the Kalman-filtering we report the 

both the filtered and the smoothed estimates. The filtered estimates consider data up to time t, while 

the smoothed estimates consider data till the end of the sample period. For comparison, we also show 

the OLS estimate both for the full sample (which corresponds to the smoothed estimate of FLS and 

Kalman-filter), but also for recursive samples (which corresponds to the filtered estimates of FLS and 

Kalman-filter). 

3 Data 

 We use quarterly data and adjust seasonally the raw time series using Census X12. We define 

inflation as Δln(seasonally adjusted consumer price level)x100. We study inflation time series of 

twelve central and eastern European countries: Albania, Bulgaria, Czech Republic, Estonia, Croatia, 

Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia. We also study the US and the euro 

area as benchmarks and for comparison with the literature. The sample period for the CEE countries is 

1993Q1-2012Q4, but we start the effective sample in 1995Q1 for all of these countries, preserving the 

earlier data points for differencing and lags (note that we allow for at most six lags). The sample period 

for the euro area is 1970Q1-2012Q4 and 1957Q1-2012Q4 for the US, which are also shortened by two 

years in the effective sample. The main source is the IMF’s International Financial Statistics (IFS) 

database. For the euro-area data in the IFS start in 1998Q1: earlier data is taken from Datastream and 

the IFS data is chained to it. The data are plotted on Figure 1. 



 7

4 Empirical results 

4.1 Tests for break in persistence 

 To see whether there has been a significant change in the persistence of our inflation series, we 

employ several formal tests. Kim (2000), which was corrected in Kim, Belaire-Franch and Amador 

(2002), proposed tests for shifting from stationarity to nonstationarity, while Busetti and Taylor (2004) 

developed tests for shifting from nonstationarity to stationarity. Both tests have the null hypothesis of 

stationarity. However, Harvey, Leybourne and Taylor (2006) have shown that these tests have the 

highly undesirable property that they display a very strong tendency to spuriously reject the constant 

I(0) null hypothesis in favour of a change in persistence when the data are generated as a constant 

I(1) process. They also showed that this effect does not vanish asymptotically and proposed modified 

versions of these tests developed by Kim (2000), Kim, Belaire-Franch and Amador (2002) and Busetti 

and Taylor (2004). In our paper we use the modified versions of the tests by Harvey, Leybourne and 

Taylor (2006). 

 Tables 1 and 2 show the results. We cannot reject the null hypothesis of constant persistence 

stationarity against the alternative of a change from stationarity to nonstationarity, but we reject, for 

most time series, the null hypothesis against the alternative of a change from nonstationarity to 

stationarity, though for Latvia and Slovakia the rejection can be made at 10 percent significance level 

only. 

4.2 Estimation results 

 We selected the lag length for our time-varying coefficient autoregression (equation 1) with the 

Box-Pierce and Ljung-Box statistics, allowing for at most six lags. The results are presented in Table 3. 

For eight CEE countries, the simple first order autoregression proved to be adequate, while two lags 

were needed for Estonia, three lags for the euro area and the USA, and five lags for Croatia and 

Lithuania. For Albania, the null hypothesis of no autocorrelation is rejected at five percent for all lags by 

the Ljung-Box statistics, while the Box-Pierce did not reject at five percent when the lag length is five. 

We therefore used five lags for Albania as well. 

 Estimation results are shown in Figures 2-15. We use the FLS with a weight parameter of 100, 

based on the results of Darvas and Varga (2012). For the FLS and the Kalman-filter we show both the 

filtered values (which, for time t, are based on data up to time t, though the estimation of parameters 

uses the full sample of data) and the smoothed values (which, for time t, are based on data up to the 
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end of the sample). For the OLS we show two similar lines: the full sample OLS corresponds to the 

smoothed values, while the recursive OLS corresponds to some extent the filtered values. Naturally, at 

the last data point the recursive OLS equals the full sample OLS, and the filtered values of the FLS and 

Kalman-filter correspond to the smoothed values of the FLS and Kalman-filter, respectively. The 

findings of Darvas and Varga (2012) suggest that we should prefer the smoothed values relative to the 

filtered values. 

 It is evident for all countries that OLS persistence estimate is much larger than the time-average 

of the time-varying persistence estimations. To assess if the OLS persistence estimate is upward 

biased relative to the time-average of the time-varying ones, we perform a one-sided t-test. To carry this 

out, we need the variances of both the OLS persistence estimate and of the average time-varying 

persistence estimate. The former comes easily from the estimated covariance matrix of the OLS 

coefficients since the persistence is simply the sum of the non-constant terms (see equation 2). The 

latter – namely the variance of the time-average of the time-varying persistence estimates – is 

approximated by using the computed sample covariance matrix of the time-varying coefficient 

sequences. Since these two variances are clearly different, we use Welch's t-test which – besides the t-

statistic – also gives an approximation for the degrees of freedom to be used with the test. 

 The upper panel of Table 4 shows the OLS point estimates and their standard errors. The lower 

panels of Table 4 show the time-average persistence of various time-varying methods with their 

standard errors, t-statistic values, degrees of freedom and finally the test p-values. The results clearly 

show that the OLS estimates are significantly higher than the average of the time-varying ones, the null 

hypothesis of equality cannot be accepted for any of the countries. 

 Since we concluded earlier that there was a change in persistence according to the tests of 

Harvey, Leybourne and Taylor (2006), we conclude that the OLS estimates are likely upward biased. 

This finding is in line with the simulation results of Darvas and Varga (2012), who found that the OLS 

estimator proved to be upward biased compared to the time-average of the parameters, when there 

were changes in the parameters of the data generating process. 

 Note that it is widely documented in the literature that the OLS estimate of the autoregressive 

coefficient (or the dominant autoregressive root) is downward biased when parameters are fixed. 

Hence, our findings complement this literature by showing that when there are changes in the 

parameters of an autoregression, the OLS is upward biased compared to the time-average of the 

parameters. 
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 Turning to the country-specific results, in the US, our estimates suggests that there was a low, 

and even negative, inflation persistence in the late 1950ies and early 1960ies, which has increased 

close to one during the oil crises. Persistence started to decline in the early 1980ies, possible due to 

the aggressive monetary policy that was adopted that time. It gradually declined by the global financial 

and economic crisis, when there was a sudden further decline, leading to almost zero persistence 

estimate by the last observation of our sample period, 2012Q4.  

 The effective sample period for the euro area starts in 1972, ie around the time of the first oil 

shock, and similarly to the US, our results suggests relatively high inflation persistence at this time 

period. Persistence then declined, but stayed at a higher level than in the US, reaching the value of 

about 0.4 by the late 1990ies, ie, by the creation of the euro. Interestingly, our results suggests that 

inflation persistence remained rather stable since the creation of the euro and did not change much 

even during the global financial and economic crisis.  

 In a number of CEE countries, inflation persistence has declined since 1995, the start date of our 

sample period. Albania, Hungary, Poland, Romania clearly show this pattern. In three other countries, 

Estonia, Latvia and Lithuania, there was also a declining path of persistence, but there was also a 

temporary increase shortly before the global financial crisis. In these three countries inflation 

increased significantly before the crisis and inflation persistence tends to be higher when inflation is 

also higher. In Bulgaria there was a non-monotonous path of inflation persistence. As Figure 1 indices, 

there was a very high inflation in Bulgaria in the first part of our sample which may distort the results. 

For Croatia, our smoothed FLS persistence estimate is quite similar at the start and at the end of the 

sample period (around 0.2), with some variation between zero and 0.3 in the meantime, while the 

Kalman-smoother estimate suggest an almost continuous increasing trend from a highly negative 

value (-0.5), which does not sound too realistic. Finally, there are three countries, the Czech Republic, 

Slovakia and Slovenia, for which our estimates suggest broadly stable persistence estimate through 

the sample period. More precisely, the Kalman-smoother identified constant persistence for these 

three countries, while the FLS-smoother suggest some changes, in particular, some decline compared 

to 1995. 

 In order to foster a better comparison across countries, Table 5 shows persistence estimates 

(based on the FLS-smoother and the Kalman-smoother) for specific dates. For the twelve CEE 

countries, we also show the median and the interquartile range. The table confirms the broadly stable 

persistence in the euro area, the close to zero persistence in the US by the end of the sample period, 

and the gradual decline in persistence in most CEE countries. 
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5 Summary 

 This paper studied inflation persistence with time-varying-coefficient autoregressions for twelve 

central European countries, in comparison to the US and the euro area. We used the well-known 

Kalman-filter and smoother and the less-known Flexible least Squares (FLS), in comparison with the 

simple OLS. 

 We found for most of the inflation series we studied that the parameters of the estimated time-

varying coefficient autoregression has changed significantly, and hence there was a change in inflation 

persistence, a result confirmed by formal tests for change in persistence. Inflation persistence tends to 

be higher in times of high inflation. Since the oil shock, inflation persistence declined to historically low 

levels in the US and euro area, yet it remained higher in the euro area (where persistence was 

practically constant since the creation of the euro) than in the US. In most central and eastern 

European countries inflation persistence has declined since 1995, with the main exceptions of the 

Czech Republic, Slovakia and Slovenia, for which the Kalman-smoother suggested constant 

persistence, and the FLS-smoother a minor fall in persistence.  

 We argued that similar persistence is an important structural similarity in a currency union and 

progress on this front of the new EU members could contribute to the economic arguments in favour of 

their entry to the euro area. 

 We also concluded that the OLS estimate is likely upward biased when the parameters of an 

autoregression change. This finding complement the literature, which concluded that the OLS estimate 

of the autoregressive coefficient (or the dominant autoregressive root) is downward biased when 

parameters are fixed. 
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Table 1: Test for the change in persistence for CEE countries 

 
Note: The first three data columns show the test statistics on the basis of Kim (2000) and Kim, Belaire-Franch and Amador 
(2002), testing for a change from I(0) to I(1): MS=mean score, ME=mean exponential and MX=maximum score. The next 

three data columns show test statistics on the basis of Busetti and Taylor (2004) testing for a change from I(1) to I(0): 
MSR=mean score / reciprocal, MER=mean exponential / reciprocal and MXR= maximum score / reciprocal. The final three data 
columns are based on the test statistics of Busetti and Taylor (2004) for testing when the direction of change is unknown: 
MSM=mean score / maximum = max(MS, MSR), MEM=mean exponential / maximum = max(ME, MER) and MXM=maximum 

score / maximum = max(MX, MXR). *** shows rejection at the 1% level, ** at the 5% level, and * at the 10% level. There are two 
lines for each country: the first shows the modified tests at the 10% level and the second the modified tests at the 5% level, 
as in Harvey, Leybourne and Taylor (2006). As a consequence, the test outcome can only be analysed at the pre-set 
significance level. 

 
Table 2: Test for the change in persistence for the euro area and the United States 

 
Note: see notes to Table 1. 
 

Series MSm  (10%) MEm  (10%) MXm  (10%) MSRm  (10%) MERm  (10%) MXRm  (10%) MSM m  (10%) MEM
m  (10%) MXM

m  (10%)
T  = 79 MSm  (5%) MEm  (5%) MXm  (5%) MSRm  (5%) MERm  (5%) MXRm  (5%) MSM m  (5%) MEM

m  (5%) MXM
m  (5%)

Albania 0.02 0.01 0.46 502.03 * 553.34 * 1137.98 * 484.50 * 528.65 * 1090.41 *
0.01 0.00 0.25 484.40 ** 528.60 ** 1090.09 ** 464.63 ** 501.42 ** 1036.72 **

Bulgaria 0.00 0.00 0.01 857.69 * 2907.37 * 6008.66 * 814.18 * 2719.34 * 5644.34 *
0.00 0.00 0.01 813.94 ** 2718.95 ** 5641.91 ** 765.74 ** 2516.59 ** 5241.91 **

Czech Republic 0.37 0.46 3.93 17.11 * 13.99 * 35.58 * 14.07 * 10.90 * 28.14 *
0.31 0.36 3.10 13.90 ** 10.73 ** 27.72 ** 11.08 ** 8.06 ** 21.10

Estonia 0.00 0.00 0.00 97.38 * 63.27 * 148.57 * 78.11 * 47.67 * 114.00 *
0.00 0.00 0.00 78.02 ** 47.65 ** 113.80 ** 60.25 ** 34.34 ** 83.36 **

Croatia 0.00 0.00 0.00 3696.58 * 3186.79 * 7261.66 * 2986.21 * 2422.93 * 5619.43 *
0.00 0.00 0.00 2982.70 ** 2421.50 ** 5609.51 ** 2322.47 ** 1763.63 ** 4149.76 **

Hungary 0.01 0.00 0.07 151.72 * 300.75 * 644.68 * 137.52 * 265.10 * 572.88 *
0.00 0.00 0.01 137.44 ** 265.02 ** 572.41 ** 122.48 ** 229.02 ** 498.23 **

Lithuania 0.00 0.00 0.00 119.72 * 204.31 * 558.75 * 72.06 * 106.45 * 303.61 *
0.00 0.00 0.00 71.86 ** 106.30 ** 302.34 ** 39.62 ** 50.00 ** 147.60 **

Latvia 0.00 0.00 0.00 6.52 * 6.71 * 20.88 * 3.72 3.26 10.63
0.00 0.00 0.00 3.71 3.26 10.58 1.92 1.41 4.79

Poland 0.00 0.00 0.00 448.51 * 864.82 * 1960.54 * 366.47 * 667.22 * 1538.08 *
0.00 0.00 0.00 366.07 ** 666.85 ** 1535.51 ** 288.87 ** 493.97 ** 1154.36 **

Romania 0.01 0.00 0.03 435.91 * 628.24 * 1538.13 * 313.78 * 411.89 * 1036.26 *
0.00 0.00 0.00 313.21 ** 411.52 ** 1033.44 ** 213.03 ** 252.52 ** 649.58 **

Slovenia 0.01 0.00 0.02 18.02 * 30.70 * 79.23 * 12.72 * 19.62 * 52.13 *
0.00 0.00 0.00 12.69 ** 19.60 ** 51.98 ** 8.44 ** 11.68 ** 31.77 **

Slovakia 0.33 0.13 0.75 5.55 * 5.21 * 14.74 * 4.05 3.47 10.09
0.24 0.08 0.49 4.04 3.47 10.06 2.79 2.17 6.44

Critical values
T= 100, Mean case MS ME MX MSR MER MXR MSM MEM MXM

10% 3.56 3.48 12.91 3.56 3.48 12.88 4.66 5.23 17.00
5% 4.67 5.31 17.24 4.64 5.25 17.00 5.91 7.38 21.72
1% 7.75 11.02 29.38 7.67 10.49 28.37 9.26 13.34 34.31

Series MSm  (10%) MEm  (10%) MXm  (10%) MSRm  (10%) MERm  (10%) MXRm  (10%) MSM m  (10%) MEM
m  (10%) MXM

m  (10%)
MSm  (5%) MEm  (5%) MXm  (5%) MSRm  (5%) MERm  (5%) MXRm  (5%) MSM m  (5%) MEM

m  (5%) MXM
m  (5%)

Euro Area 0.03 0.01 0.09 213.56 * 355.89 * 775.19 * 188.35 * 302.86 * 666.58 *
T  = 171 0.01 0.00 0.01 188.22 ** 302.76 ** 665.88 ** 162.44 ** 251.21 ** 557.60 **

United States 0.56 1.85 7.50 26.97 * 44.53 * 99.46 * 25.67 * 41.79 * 93.72 *
T  = 223 0.29 0.75 3.20 25.67 ** 41.79 ** 93.69 ** 24.22 ** 38.83 ** 87.37 **

Critical values
T= 200, Mean case MS ME MX MSR MER MXR MSM MEM MXM

10% 3.51 3.36 13.14 3.54 3.47 13.37 4.62 5.11 17.31
5% 4.58 5.06 17.18 4.68 5.27 17.65 5.85 7.24 22.06
1% 7.56 10.21 28.58 7.82 10.69 29.64 9.21 13.20 34.82
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Table 3: Box-Pierce and Ljung-Box tests for serial correlation of the residuals of the estimated 

autoregressions 

 
Note: the p-values are indicated. BP=Box-Pierce, LB=Ljung-Box. Bold numbers indicate our selection.  

 
 
Table 4: Tests for the equality of the OLS estimate and the mean of the time-varying parameter 

estimates 

 
Note: see the description of the test in the main text. 

 

BP LB BP LB BP LB BP LB BP LB BP LB BP LB

1 0.001 0.001 0.193 0.168 0.101 0.076 0.012 0.008 0.080 0.055 0.219 0.184 0.187 0.153
2 0.001 0.000 0.962 0.957 0.069 0.049 0.075 0.053 0.128 0.096 0.688 0.652 0.133 0.106
3 0.026 0.015 0.990 0.988 0.259 0.212 0.042 0.028 0.159 0.122 0.651 0.613 0.658 0.618
4 0.005 0.002 0.014 0.009 0.993 0.992 0.076 0.053 0.120 0.091 0.362 0.317 0.947 0.935
5 0.055 0.039 0.012 0.007 0.991 0.989 0.146 0.112 0.593 0.550 0.049 0.035 0.340 0.283
6 0.001 0.001 0.006 0.004 0.653 0.615 0.188 0.148 0.888 0.870 0.050 0.035 0.842 0.812

BP LB BP LB BP LB BP LB BP LB BP LB BP LB

1 0.040 0.025 0.854 0.836 0.492 0.461 0.119 0.097 0.653 0.623 0.012 0.010 0.001 0.001
2 0.024 0.015 0.891 0.873 0.031 0.022 0.118 0.092 0.498 0.462 0.018 0.015 0.002 0.002
3 0.000 0.000 0.856 0.833 0.054 0.042 0.053 0.039 0.650 0.617 0.156 0.140 0.145 0.133
4 0.001 0.000 0.783 0.754 0.079 0.063 0.056 0.042 0.225 0.192 0.019 0.016 0.851 0.843
5 0.265 0.217 0.110 0.081 0.281 0.246 0.085 0.067 0.261 0.222 0.003 0.003 0.893 0.887
6 0.377 0.324 0.180 0.135 0.135 0.110 0.287 0.254 0.055 0.040 0.013 0.011 0.913 0.908

Lags
Albania Bulgaria Czech Republic Croatia Estonia Hungary Latvia
T  = 79 T = 79 T  = 79 T = 79 T = 79 T  = 79 T  = 79

Lags
Lithuania Poland Romania Slovakia Slovenia Euro-area USA

T  = 79 T = 79 T  = 79 T = 79 T = 79 T  = 171 T  = 223

Method Albania Bulgaria Czech 
Republic Croatia Estonia Hungary Latvia Lithuania Poland Romania Slovakia Slovenia Euro-

area USA

OLS Estimate 0.705 0.477 0.579 0.235 0.811 0.877 0.826 0.774 0.847 0.725 0.330 0.692 0.966 0.864
Standard Error 0.085 0.102 0.093 0.179 0.054 0.049 0.054 0.048 0.037 0.080 0.109 0.070 0.025 0.044

FLS Filtered Mean of Estimate 0.008 0.056 0.260 -0.003 0.454 0.501 0.622 0.564 0.561 -0.754 0.141 0.305 0.538 0.307
Standard Error 0.352 0.541 0.107 0.172 0.200 0.156 0.129 0.260 0.101 0.837 0.279 0.119 0.143 0.349
T-stat Value 16.441 6.522 19.145 8.192 14.700 19.644 12.497 6.789 22.800 15.032 5.374 23.949 37.918 23.333
T-stat DoF (est) 80 77 141 144 82 86 97 77 91 73 93 116 174 223
T-stat P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FLS Smoothed Mean of Estimate 0.008 0.208 0.349 0.111 0.513 0.473 0.693 0.542 0.565 -0.137 0.132 0.380 0.571 0.338
Standard Error 0.468 0.529 0.051 0.116 0.134 0.165 0.094 0.177 0.110 0.481 0.039 0.073 0.155 0.278
T-stat Value 12.505 4.268 18.520 4.965 17.647 20.109 10.479 10.818 20.788 15.126 14.616 26.478 32.340 27.581
T-stat DoF (est) 77 77 111 124 94 85 115 82 88 76 90 144 173 227
T-stat P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Kalman Filter Mean of Estimate -0.046 0.033 0.292 -0.205 0.525 0.615 0.505 0.561 0.689 -0.485 0.184 0.459 0.522 0.306
Standard Error 0.376 1.059 0.065 0.315 0.186 0.138 0.289 0.303 0.048 0.822 0.177 0.043 0.209 0.420
T-stat Value 16.643 3.566 21.507 10.366 12.644 15.233 9.322 5.944 22.315 12.519 6.014 24.347 27.100 19.501
T-stat DoF (est) 79 73 129 114 84 90 77 76 135 73 120 120 169 221
T-stat P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Kalman Smoother Mean of Estimate -0.058 0.266 0.334 -0.020 0.540 0.552 0.619 0.539 0.680 -0.156 0.131 0.456 0.609 0.289
Standard Error 0.497 0.993 0.000 0.269 0.124 0.148 0.212 0.221 0.063 0.518 0.000 0.000 0.204 0.363
T-stat Value 12.916 1.808 22.451 6.740 17.130 17.790 8.098 8.894 19.548 14.365 15.619 28.894 22.323 23.204
T-stat DoF (est) 76 74 72 125 98 88 81 79 116 75 72 72 169 222
T-stat P-value 0.000 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 5: Summary of time-varying measures of persistence at specific dates 

 
 

 

Country 1995Q1 1999Q1 2003Q1 2007Q1 2012Q4 1995Q1 1999Q1 2003Q1 2007Q1 2012Q4
Euro Area 0.51 0.41 0.42 0.42 0.43 0.53 0.36 0.43 0.43 0.45
United States 0.28 0.21 0.14 0.11 -0.04 0.24 0.14 0.05 0.32 -0.01
Albania 0.61 0.22 -0.17 -0.33 -0.45 0.39 0.16 -0.14 -0.40 -0.59
Bulgaria 0.40 0.05 -0.11 0.21 0.07 0.55 1.23 -0.39 0.19 -0.14
Croatia 0.18 0.20 -0.10 0.13 0.20 -0.49 -0.26 -0.08 0.20 0.37
Czech Republic 0.44 0.31 0.29 0.36 0.34 0.33 0.33 0.33 0.33 0.33
Estonia 0.79 0.44 0.33 0.65 0.47 0.84 0.53 0.40 0.61 0.45
Hungary 0.82 0.61 0.42 0.43 0.25 0.86 0.68 0.51 0.48 0.37
Latvia 0.84 0.57 0.67 0.88 0.65 1.01 0.35 0.57 0.98 0.47
Lithuania 0.76 0.38 0.52 0.84 0.34 0.76 0.42 0.65 0.64 0.24
Poland 0.77 0.67 0.51 0.48 0.46 0.80 0.74 0.66 0.63 0.62
Romania 0.01 0.39 -0.16 -0.65 -0.55 -0.47 -0.09 -0.34 -0.53 -0.17
Slovakia 0.27 0.18 0.16 0.10 0.13 0.13 0.13 0.13 0.13 0.13
Slovenia 0.49 0.41 0.39 0.37 0.27 0.46 0.46 0.46 0.46 0.46
75% percentile of CEE 0.77 0.47 0.44 0.52 0.37 0.81 0.57 0.53 0.62 0.45
Median of CEE 0.55 0.39 0.31 0.36 0.26 0.50 0.39 0.36 0.40 0.35
25% percentile of CEE 0.37 0.22 -0.10 0.12 0.12 0.28 0.15 -0.10 0.18 0.06

Kalman-smoothedFLS-smoothed
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Figure 1: Seasonally adjusted quarterly inflation rates (percent) 

 

 

Note: The central and eastern European countries are grouped according to the highest level of inflation during the sample 
period. 
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Figure 2: US – Estimated inflation persistence 

 
Figure 3: Euro-area – Estimated inflation persistence 
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Figure 4: Albania – Estimated inflation persistence 

 
Figure 5: Bulgaria– Estimated inflation persistence 
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Figure 6: Czech Republic – Estimated inflation persistence 

 
Figure 7: Croatia – Estimated inflation persistence 
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Figure 8: Estonia – Estimated inflation persistence 

 
Figure 9: Hungary – Estimated inflation persistence 
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Figure 10: Latvia – Estimated inflation persistence 

 
Figure 11: Lithuania – Estimated inflation persistence 
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Figure 12: Poland – Estimated inflation persistence 

 
Figure 13: Romania – Estimated inflation persistence 
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Figure 14: Slovakia – Estimated inflation persistence 

 
Figure 15: Slovenia – Estimated inflation persistence 

 
 


